Mitogen-Activated Protein Kinases and Chemoresistance in Pancreatic Cancer Cells

Academic Article

Abstract

  • Background: Chemoresistance is an important clinical problem in pancreatic cancer. As the mitogen-activated protein kinases (MAPKs) have been found to be involved in the development of chemoresistance in a variety of cancer cell lines, the aim of the current study was to assess the role and mechanism of MAPK signaling in mediating chemoresistance in pancreatic cancer cells. Materials and methods: The effects of pharmacological inhibition of MAPKs on resistance of pancreatic cancer cells to apoptosis induced by treatment with chemotherapeutic drugs were analyzed. Results: Compared with parental cells, the activity of extracellular signal-regulated kinase (ERK) was elevated in all of the three chemoresistant sublines at basal conditions. Inhibition of the ERK pathway by PD98059 sensitized cells to 5-fluorouracil (5-FU), whereas cells became more resistant to Adriamycin (ADM; Meiji Seika, Tokyo, Japan) and gemcitabine (GEM). 5-FU induced apoptosis primarily via a caspase-8-dependent pathway, and ADM and GEM via caspase-9. PD98059 enhanced the activity of caspase-8 and inhibited the activation of caspase-9. In addition, PD98059 regulated the level of phospho-Bcl-2. Conclusions: These data suggest that although constitutive activation of the ERK pathway might be a marker of chemoresistance, the effects of this pathway on chemoresistance of pancreatic cancer cells are drug dependent. This study also provides evidence for a possible link between the ERK pathway and activation of the caspases and Bcl-2. © 2006 Elsevier Inc. All rights reserved.
  • Digital Object Identifier (doi)

    Author List

  • Zhao Y; Shen S; Guo J; Chen H; Yu Greenblatt D; Kleeff J; Liao Q; Chen G; Friess H; Sing Leung P
  • Start Page

  • 325
  • End Page

  • 335
  • Volume

  • 136
  • Issue

  • 2