Fractionation of lymphocyte subpopulations which regulate mixed lymphocyte reactions

Academic Article


  • 4 days after injection of allogeneic lymphocytes BALB/c splenic T cells suppress proliferation of syngeneic cells in mixed lymphocyte reactions (MLR). Conversely, lymph node cells from the same mice amplify MLR responses. To further characterize these functional subpopulations, alloantigen-primed lymphocyte suspensions from both organs were fractionated by velocity sedimentation at unit-gravity. After fractionation MLR suppressor cells from spleens localized exclusively in rapidly sedimenting fractions of large cells. MLR suppressor activity of cells from these fractions, as well as that of unfractionated spleen cell suspensions, was abolished by treatment with anti-Thy-1.2 serum and complement. Spleen cell fractions of similar sedimentation velocity also secreted a soluble MLR suppressor into culture supernatants. Although inhibitory of MLR, spleen cells of rapid sedimentation velocity did not suppress responses to T cell mitogens. In marked contrast with the effects of spleen cells, large 4-day-alloantigen primed lymph node cells had no suppressive activity in MLR. MLR amplifier cells of uncertain derivation were found in fractions of medium sedimentation velocity from both spleens and lymph nodes. Fractionation of alloantigen-primed lymph node cell suspensions did reveal, however, a subpopulation of small cells with MLR suppressor activity which was unaffected by treatment with anti-Thy-1 serum and complement. The data thus indicate that large alloantigen-activated lymphocytes are not intrinsically suppressive nor are cells which suppress MLR necessarily large. It is concluded that regulation of MLR responses by alloantigen primed lymphocytes involves a complex interaction between distinct functional subpopulations of cells which are separable both by physical and biologic properties.
  • Published In

    Author List

  • Rich RR; Chu L; Rich SS
  • Start Page

  • 1252
  • End Page

  • 1258
  • Volume

  • 118
  • Issue

  • 4