Fibronectin from alpha 1,3-galactosyltransferase knockout pigs is a xenoantigen

Academic Article


  • Background: Antibody-mediated rejection continues to be an obstacle for xenotransplantation despite development of α1,3-galactosyltransferase knockout (GTKO) pigs. Fibronectin (Fn) from GTKO pigs was identified as a xenoantigen in baboons. N-glycolylneuraminic acid (Neu5Gc), similar to galactose α1,3-galactose, is an antigenic carbohydrate found in pigs. We evaluated human antibody reactivity and performed initial antigenic epitope characterization of Fn from GTKO pigs. Materials and methods: GTKO pig aortic endothelial cells (AEC) were isolated and assessed for antibody-mediated complement-dependent cytotoxicity (CDC). Human and GTKO pig Fn were purified and analyzed using immunoblots. GTKO pig and human AEC absorbed human sera were assessed for CDC and anti-GTKO pig Fn antibodies. GTKO pig proteins were assessed for Neu5Gc. Immunoaffinity-purified human IgG anti-GTKO pig (hIgG-GTKOp) Fn using a GTKO pig Fn column were evaluated for cross-reactivity with other proteins. Results: GTKO pig AEC had greater human antibody binding, complement deposition and CDC compared with allogeneic human AEC. Human sera absorbed with GTKO pig AEC resulted in diminished anti-GTKO pig Fn antibody. Neu5Gc was identified on GTKO pig Fn and other proteins. The hIgG-GTKOp Fn cross-reacted with multiple GTKO pig proteins and was enriched with anti-Neu5Gc antibody. Conclusions: Removal of antigenic epitopes from GTKO pig AEC would improve xenograft compatibility. GTKO pig Fn has antigenic epitopes, one identified as Neu5Gc, which may be responsible for pathology and cross-reactivity of hIgG-GTKOp Fn. Genetic knockout of Neu5Gc appears necessary to address significance and identification of non-Neu5Gc GTKO pig Fn antigenic epitopes. © 2013 Elsevier Inc. All rights reserved.
  • Authors

    Published In

    Digital Object Identifier (doi)

    Pubmed Id

  • 8607723
  • Author List

  • Chihara RK; Lutz AJ; Paris LL; Wang ZY; Sidner RA; Heyrman AT; Downey SM; Burlak C; Tector AJ
  • Start Page

  • 1123
  • End Page

  • 1133
  • Volume

  • 184
  • Issue

  • 2