We provide a characterization of the spectral minimum for a random Schrödinger operator of the form H = - Delta + Σiεℤ d q(x - i - omegai) in L2(ℝd), where the single site potential q is reflection symmetric, compactly supported in the unit cube centered at 0, and the displacement parameters ω i are restricted so that adjacent single site potentials do not overlap. In particular, we show that a minimizing configuration of the displacements is given by a periodic pattern of densest possible 2 d -clusters of single site potentials. The main tool to prove this is a quite general phenomenon in the spectral theory of Neumann problems, which we dub "bubbles tend to the boundary." How should a given compactly supported potential be placed into a bounded domain so as to minimize or maximize the first Neumann eigenvalue of the Schrödinger operator on this domain? For square or rectangular domains and reflection symmetric potentials, we show that the first Neumann eigenvalue is minimized when the potential sits in one of the corners of the domain and is maximized when it sits in the center of the domain. With different methods we also show a corresponding result for smooth strictly convex domains. © 2008 Springer-Verlag.