Serotonin enhances urinary bladder nociceptive processing via a 5-HT3 receptor mechanism

Academic Article


  • © 2015 Elsevier Ireland Ltd. Serotonin from the descending pain modulatory pathway is critical to nociceptive processing. Its effects on pain modulation may either be inhibitory or facilitatory, depending on the type of pain and which receptors are involved. Little is known about the role of serotonergic systems in bladder nociceptive processing. These studies examined the effect of systemic administration of the serotonin precursor, 5-hydroxytryptophan (5-HTP), on normal bladder and somatic sensation in rats. ELISA was used to quantify peripheral and central changes in serotonin and its major metabolite following 5-HTP administration, and the potential role of the 5-HT3 receptor on changes in bladder sensation elicited by 5-HTP was investigated.5-HTP produced bladder hypersensitivity and somatic analgesia. The pro-nociceptive effect of 5-HTP was attenuated by intrathecal, but not systemic, ondansetron. Peripheral increases in serotonin, its metabolism and rate of turnover were detectable within 30min of 5-HTP administration. Significant enhancement of serotonin metabolism was observed centrally. These findings suggest that 5-HTP increases serotonin, which may then affect descending facilitatory systems to produce bladder hypersensitivity via activation of spinal 5-HT3 receptors.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Hall JD; DeWitte C; Ness TJ; Robbins MT
  • Start Page

  • 97
  • End Page

  • 102
  • Volume

  • 604