In vitro reactivation of anaphase B in isolated spindles of the sea urchin egg.

Academic Article

Abstract

  • Spindles may be isolated from sea urchin eggs so that some mitotic processes can be reactivated in vitro. The isolation media allow spindles to remain stable for days. Transfer of the spindles to reactivation media results in loss of birefringence and breakdown of the matrix within which the microtubules function. If, however, tubulin and either guanosine triphosphate or adenosine triphosphate are present in these media so that tubulin can cycle, the spindles do not break down but grow in size and birefringence and show some of the movements of in vivo spindles. The most prominent is that of anaphase B if the mitotic apparatuses (MAs) have been isolated at a time when anaphase was initiated. When isolated during metaphase, MAs either do not show chromosome movement or, if they do, it is a random movement which causes redistribution of the chromosomes on the spindle surface. In either case, such metaphase spindles grow in size and birefringence. Thus under the proper conditions, cycling microtubules can interact with the spindle matrix to induce chromosome movements which resemble those seen in in vivo cells in the case of anaphase B and show some aspects of anaphase A in at least half the spindles isolated at metaphase, although such movements are not coordinated to show a true anaphase movement.
  • Authors

    Published In

  • Cytoskeleton  Journal
  • Digital Object Identifier (doi)

    Author List

  • Rebhun LI; Palazzo RE
  • Start Page

  • 197
  • End Page

  • 209
  • Volume

  • 10
  • Issue

  • 1-2