Extracellular field required for excitation in three-dimensional anisotropic canine myocardium

Academic Article


  • It is not known how well potential gradient, current density, and energy correlate with excitation by extracellular stimulation in the in situ heart. Additionally, the influence of fiber orientation and stimulus polarity on the extracellular thresholds for stimulation expressed in terms of these factors has not been assessed. To answer these questions for myocardium in electrical diastole, extracellular excitation thresholds were determined from measurements of stimulus potentials and activation patterns recorded from 120 transmural electrodes in a 35 x 20 x 5-mm region of the right ventricular outflow tract in six open-chest dogs. Extracellular potential gradients, current densities, energies, and their components longitudinal and transverse to the local fiber orientation at each recording site were calculated from the stimulus potentials produced by 3-msec constant-current stimuli. The resulting values in regions directly excited by the stimulus field were compared with the values in regions not directly excited but activated by the spread of wavefronts conducting away from the directly excited region. Magnitudes of 3.66 mA/cm2 for current density, 9.7 μJ/cm3 for energy, and 804 mV/cm for potential gradient yielded minimum misclassifications of 8%, 13%, and 17%, respectively, of sites directly and not directly excited. A linear bivariate combination of the longitudinal (l) and transverse (t) components of the potential gradient yielded 7% misclassification (threshold ratio t/l of 2.88), and linear combination of corresponding current density components yielded 8% misclassification (threshold ratio t/l of 1.04). Anodal and cathodal thresholds were not significanlty different (p = 0.39). Potential gradient, current density, and energy strength-duration curves were constructed for pulse durations (D) of 0.2-20 msec. The best fit hyperbolic curve for current density magnitude (J(m)) was J(m) = 3.97/D + 3.15, where J(m) is in mA/cm2, and D is in msec. Thus, for stimulation during electrical diastole 1) both current density magnitude and longitudinal and transverse components of the potential gradient are closely correlated with excitation, 2) the extracellular potential gradient along cardiac cells has a lower threshold than across cells, while current density thresholds along and across cells are similar, 3) anodal and cathodal thresholds are approximately equal for stimuli ≥ 5 mA, and 4) the extracellular potential gradient, current density, and energy excitation thresholds can be expressed by strength-duration equations.
  • Authors

    Published In

    Digital Object Identifier (doi)

    Author List

  • Frazier DW; Krassowska W; Chen PS; Wolf PD; Dixon EG; Smith WM; Ideker RE
  • Start Page

  • 147
  • End Page

  • 164
  • Volume

  • 63
  • Issue

  • 1