Captopril prevents vascular and fibrotic changes but not cardiac hypertrophy in aortic-banded rats

Academic Article


  • To determine the role of the reninangiotensin system (RAS) on cardiovascular remodeling in a pressure overload model of cardiac hypertrophy, a subdiaphragmatic aortic band was placed in adult male, Sprague-Dawley rats. Rats were left untreated (AB) or given captopril (Cap, 400 mg/l) (AB-Cap). Sham-operated controls were either left untreated (S) or given Cap (S-Cap). After 4 wk, rats were catheterized, and carotid and femoral mean arterial pressures (CMAP and FMAP in mmHg, respectively) were recorded. Hearts were isolated, and minimal coronary resistance (MCR) was determined. Hearts were then perfusion fixed, total and regional heart weights were recorded, and sections were processed for vessel morphology. Changes in coronary artery medial thickness and perivascular fibrosis were assessed by quantitative image analysis. CMAP was significantly higher in AB and AB-Cap than S or S-Cap rats (P < 0.05). There was no difference in FMAP in AB vs. S rats, but AB-Cap and S-Cap had lower FMAP values than S rats. Total heart weight and left ventricular weight-to-body weight ratios were increased in AB and AB-Cap rats compared with S and S-Cap rats (P < 0.05). MCR of AB was greater than S and S-Cap rats. MCR of AB-Cap rats was significantly greater than S and S-Cap rats but was significantly less than AB rats. In coronary vessels, medial thickness was greatest in AB, whereas there was no difference among AB-Cap, S, and S-Cap rats. Similarly, the increase in perivascular fibrosis was greatest in AB rats, and there was no difference among AB-Cap, S, and S-Cap rats. These data suggest that the RAS, independent of increased arterial pressure, is critical for the development of the vascular and fibrotic changes that occur in ibis model of pressure overload hypertrophy.
  • Authors

    Author List

  • Regan CP; Anderson PG; Bishop SP; Berecek KH
  • Volume

  • 271
  • Issue

  • 3 40-3