Myosin IIb Regulates actin dynamics during synaptic plasticity and memory formation

Academic Article


  • Reorganization of the actin cytoskeleton is essential for synaptic plasticity and memory formation. Presently, the mechanisms that trigger actin dynamics during these brain processes are poorly understood. In this study, we show that myosin II motor activity is downstream of LTP induction and is necessary for the emergence of specialized actin structures that stabilize an early phase of LTP. We also demonstrate that myosin II activity contributes importantly to an actin-dependent process that underlies memory consolidation. Pharmacological treatments that promote actin polymerization reversed the effects of a myosin II inhibitor on LTP and memory. We conclude that myosin II motors regulate plasticity by imparting mechanical forces onto the spine actin cytoskeleton in response to synaptic stimulation. These cytoskeletal forces trigger the emergence of actin structures that stabilize synaptic plasticity. Our studies provide a mechanical framework for understanding cytoskeletal dynamics associated with synaptic plasticity and memory formation. © 2010 Elsevier Inc.
  • Authors

    Published In

  • Neuron  Journal
  • Digital Object Identifier (doi)

    Author List

  • Rex CS; Gavin CF; Rubio MD; Kramar EA; Chen LY; Jia Y; Huganir RL; Muzyczka N; Gall CM; Miller CA
  • Start Page

  • 603
  • End Page

  • 617
  • Volume

  • 67
  • Issue

  • 4