Heme oxygenase and carbon monoxide protect from muscle dystrophy

Academic Article

Abstract

  • © 2016 The Author(s). Background: Duchenne muscle dystrophy (DMD) is one of the most common lethal genetic diseases of children worldwide and is 100% fatal. Steroids, the only therapy currently available, are marred by poor efficacy and a high side-effect profile. New therapeutic approaches are urgently needed. Methods: Here, we leverage PGC-1α, a powerful transcriptional coactivator known to protect against dystrophy in the mdx murine model of DMD, to search for novel mechanisms of protection against dystrophy. Results: We identify heme oxygenase-1 (HO-1) as a potential novel target for the treatment of DMD. Expression of HO-1 is blunted in the muscles from the mdx murine model of DMD, and further reduction of HO-1 by genetic haploinsufficiency worsens muscle damage in mdx mice. Conversely, induction of HO-1 pharmacologically protects against muscle damage. Mechanistically, HO-1 degrades heme into biliverdin, releasing in the process ferrous iron and carbon monoxide (CO). We show that exposure to a safe low dose of CO protects against muscle damage in mdx mice, as does pharmacological treatment with CO-releasing molecules. Conclusions: These data identify HO-1 and CO as novel therapeutic agents for the treatment of DMD. Safety profiles and clinical testing of inhaled CO already exist, underscoring the translational potential of these observations.
  • Authors

    Digital Object Identifier (doi)

    Author List

  • Chan MC; Ziegler O; Liu L; Rowe GC; Das S; Otterbein LE; Arany Z
  • Volume

  • 6
  • Issue

  • 1