Non-B DNA conformations formed by long repeating tracts of myotonic dystrophy type 1, myotonic dystrophy type 2, and Friedreich's ataxia genes, not the sequences per se, promote mutagenesis in Flanking regions

Academic Article


  • The expansions of long repeating tracts of CTG·CAG, CCTG·CAGG, and GAA·TTC are integral to the etiology of myotonic dystrophy type 1 (DM1), myotonic dystrophy type 2 (DM2), and Friedreich's ataxia (FRDA). Essentially all studies on the molecular mechanisms of this expansion process invoke an important role for non-B DNA conformations which may be adopted by these repeat sequences. We have directly evaluated the role(s) of the repeating sequences per se, or of the non-B DNA conformations formed by these sequences, in the mutagenic process. Studies in Escherichia coli and three types of mammalian (COS-7, CV-1, and HEK-293) fibroblast-like cells revealed that conditions which promoted the formation of the non-B DNA structures enhanced the genetic instabilities, both within the repeat sequences and in the flanking sequences of up to ∼4 kbp. The three strategies utilized included: the in vivo modulation of global negative supercoil density using topA and gyrB mutant E. coli strains; the in vivo cleavage of hairpin loops, which are an obligate consequence of slipped-strand structures, cruciforms, and intramolecular triplexes, by inactivation of the SbcC protein; and by genetic instability studies with plasmids containing long repeating sequence inserts that do, and do not, adopt non-B DNA structures in vitro. Hence, non-B DNA conformations are critical for these mutagenesis mechanisms. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.
  • Authors

    Published In

    Digital Object Identifier (doi)

    Author List

  • Wojciechowska M; Napierala M; Larson JE; Wells RD
  • Start Page

  • 24531
  • End Page

  • 24543
  • Volume

  • 281
  • Issue

  • 34