Bioactivity of peptide analogs of the neutrophil chemoattractant, N-acetyl-proline-glycine-proline.

Academic Article

Abstract

  • PURPOSE: The release of N-acetyl-proline-glycine-proline (PGP), a chemoattractant resulting from direct alkaline hydrolysis of corneal proteins, is believed to be the initial trigger for neutrophil invasion into the alkali-injured cornea. The purpose of this study is twofold: (1) to compare the activity of N-acetyl-PGP with the bioactivities of other similar synthetic peptides in an effort to uncover information about this chemoattractant molecule, and (2) to test these peptide analogs as potential antagonists of N-acetyl-PGP. METHODS: The polarization assay was used to measure the potential chemotactic response of human neutrophils to peptides. Bioactivity was expressed as the peptide concentration required to produce 50% neutrophil polarization (EC50). Antagonist activity was expressed as the peptide concentration required to produce 50% inhibition (ID50) of polarization activated by N-acetyl-PGP. RESULTS: Peptide bioactivities (EC50) were ranked as follows: APGPR (0.34 mM) > N-acetyl-PGP (0.5 mM) > N-(PGP)4-PGLG (3 mM) = t-Boc-PGP (3 mM) > N-acetyl-PG (3.4 mM) > N-methyl-PGP (15 mM) = PGP (15 mM) > peptides without detectable activity (t-Boc-PGP-OMe, N-acetyl-P, PG, PGG, GP, GG and gly-pro-hyp). Peptides with no detectable bioactivity were tested as potential antagonists of neutrophil polarization induced by N-acetyl-PGP. Gly-Pro-Hyp inhibited N-acetyl-PGP activation of polarization at 20 mM (ID50). No other synthetic peptide demonstrated a capacity for inhibition. CONCLUSIONS: The minimum requirement to elicit bioactivity was the presence of PGP alone or derivatives of PG in which the N-terminal proline is blocked. Using this approach, active and inactive mimetic peptides of N-acetyl-PGP were produced. The most active peptide, APGPR, was equal to or slightly greater than N-acetyl-PGP, suggesting that more potent analogs might be designed. Gly-pro-hyp was the only inactive peptide analog to inhibit the chemoattractant.
  • Keywords

  • Chemotactic Factors, Chemotaxis, Leukocyte, Humans, Neutrophil Activation, Neutrophils, Oligopeptides, Proline, Structure-Activity Relationship
  • Author List

  • Haddox JL; Pfister RR; Muccio DD; Villain M; Sommers CI; Chaddha M; Anantharamaiah GM; Brouillette WJ; DeLucas LJ
  • Start Page

  • 2427
  • End Page

  • 2429
  • Volume

  • 40
  • Issue

  • 10