Rabbit retinal ganglion cell responses mediated by α-bungarotoxin-sensitive nicotinic acetylcholine receptors

Academic Article

Abstract

  • The responses of many ganglion cells in the rabbit retina are mediated, at least in part, by acetylcholine (ACh) acting on neuronal nicotinic acetylcholine receptors (nAChRs). nAChRs are comprised of α and β subunits; three β subunits and nine α subunits of nAChRs have been identified and these subunits can combine to form a large number of functionally distinct nAChR subtypes. We examined the effects of cholinergic agents on the light-evoked responses of ganglion cells to determine which nAChR subtypes mediate the effects of ACh. Extracellular recordings of retinal ganglion cells were made in intact everted eyecup preparations and nicotinic agonists and antagonists were added to the superfusate. While several ganglion cell classes exhibited methyllycaconitine (MLA) sensitivity, the directionally selective (DS) ganglion cells were most sensitive; exposure to 30 nanomolar MLA, a concentration reportedly too low to affect αBgt-insensitive nAChRs, suppressed the stimulus-evoked responses of DS cells without eliminating directional selectivity. Epibatidine, which at low concentrations is an agonist selective for αBgt-insensitive nAChRs, stimulated firing of various cell types including DS ganglion cells at low nanomolar concentrations. The effects of the various agents tested persisted under cobalt-induced synaptic blockade. The low nanomolar MLA and epibatidine sensitivity of DS cells suggests that DS ganglion cells express both αBgt-sensitive and αBgt-insensitive nAChRs. Other ganglion cell types appear to express only αBgt-sensitive nAChRs but not αBgt-insensitive nAChRs.
  • Digital Object Identifier (doi)

    Author List

  • Reed BT; Amthor FR; Keyser KT
  • Start Page

  • 427
  • End Page

  • 438
  • Volume

  • 19
  • Issue

  • 4