Expression of the NR2B-NMDA receptor trafficking complex in prefrontal cortex from a group of elderly patients with schizophrenia

Academic Article

Abstract

  • Dysregulated glutamate neurotransmission has been implicated in the pathophysiology of schizophrenia. In particular, hypofunction of the NMDA glutamate receptor has been proposed to play an important role in mediating cognitive deficits in patients. The two NMDA receptor subunits, NR2A and NR2B, are distinctly regulated during development and are associated with different intracellular pathways and functions, which suggest that these receptors play separate roles in the control of higher cognitive functions such as learning and memory. Trafficking of the NR2B subunit-containing receptor is regulated by a microtubule-associated trafficking complex consisting of the KIF17, APBA1, CASK, and mLin7 proteins. Several studies have demonstrated an integrated functional regulation of this trafficking complex with NR2B receptor subunit expression, which in turn has been linked to higher cognitive functions. In the present work, we investigated whether expression of this NR2B-associated trafficking complex might be abnormal in schizophrenia. We analyzed the expression of KIF17, APBA1, CASK, mLin7A and mLin7C in postmortem brain from patients with schizophrenia a comparison group. Analysis of transcripts for all of these proteins revealed particularly prominent expression in cortical layer III and layer IV, which overlapped with NR2B but not NR2A transcripts. We found altered expression of transcripts for the CASK, ABPA1, and mLin7 molecules and the CASK, mLin7 proteins, suggesting that NR2B-containing NMDA receptor transport could be selectively compromised in schizophrenia, and that these changes likely involve altered NR2B function in a subset of cortical neurons. © 2010 Elsevier B.V.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Kristiansen LV; Bakir B; Haroutunian V; Meador-Woodruff JH
  • Start Page

  • 198
  • End Page

  • 209
  • Volume

  • 119
  • Issue

  • 1-3