Thrombospondin modulates focal adhesions in endothelial cells

Academic Article

Abstract

  • We examined the effects of thrombospondin (TSP) in the substrate adhesion of bovine aortic endothelial cells. The protein was tested both as a substrate for cell adhesion and as a modulator of the later stages of the cell adhesive process. TSP substrates supported the attachment of some BAE cells, but not cell spreading or the formation of focal adhesion plaques. In contrast, cells seeded on fibrinogen or fibronectin substrates were able to complete the adhesive process, as indicated by the formation of focal adhesion plaques. Incubation of cells in suspension with soluble TSP before or at the time of seeding onto fibronectin substrates resulted in an inhibition of focal adhesion formation. Furthermore, the addition of TSP to fully adherent cells in situ or prespread on fibronectin substrates caused a reduction in the number of cells, which were positive for focal adhesions, although there was no significant effect on cell spreading. In a dose-dependent manner, TSP reduced the number of cells with adhesion plaques to ~60% of control levels. The distribution of remaining adhesion plaques in TSP-treated cells was also altered: plaques were primarily limited to the periphery of cells and were not present in the central cell body, as in control cells treated with BSA. The observed effects were specific for TSP and were not observed with platelet factor 4, beta-thromboglobulin, or fibronectin. The TSP-mediated loss of adhesion plaques was neutralized by the addition of heparin, fucoidan, other heparin-binding proteins, and by a monoclonal antibody to the heparin binding domain of TSP, but not by antibodies to the core or carboxy-terminal regions of TSP. The interaction of the heparin-binding domain of TSP with cell-associated heparan sulfate appears to be an important mechanistic component for this activity of TSP. These data indicate that TSP may have a role in destabilizing cell adhesion through prevention of focal adhesion formation and by loss of preformed focal adhesions.
  • Digital Object Identifier (doi)

    Author List

  • Murphy-Ullrich JE; Hook M
  • Start Page

  • 1309
  • End Page

  • 1319
  • Volume

  • 109
  • Issue

  • 3