Mechanoregulation of intracellular Ca2+ concentration is attenuated in collecting duct of monocilium-impaired orpk mice.

Academic Article


  • Autosomal recessive polycystic kidney disease (ARPKD) is characterized by the progressive dilatation of collecting ducts, the nephron segments responsible for the final renal regulation of sodium, potassium, acid-base, and water balance. Murine models of ARPKD possess mutations in genes encoding cilia-associated proteins, including Tg737 in orpk mice. New findings implicate defects in structure/function of primary cilia as central to the development of polycystic kidney disease. Our group (Liu W, Xu S, Woda C, Kim P, Weinbaum S, and Satlin LM, Am J Physiol Renal Physiol 285: F998-F1012, 2003) recently reported that increases in luminal flow rate in rabbit collecting ducts increase intracellular Ca(2+) concentration ([Ca(2+)](i)) in cells therein. We thus hypothesized that fluid shear acting on the apical membrane or hydrodynamic bending moments acting on the cilium increase renal epithelial [Ca(2+)](i). To further explore this, we tested whether flow-induced [Ca(2+)](i) transients in collecting ducts from mutant orpk mice, which possess structurally abnormal cilia, differ from those in controls. Isolated segments from 1- and 2-wk-old mice were microperfused in vitro and loaded with fura 2; [Ca(2+)](i) was measured by digital ratio fluorometry before and after the rate of luminal flow was increased. All collecting ducts responded to an increase in flow with an increase in [Ca(2+)](i), a response that appeared to be dependent on luminal Ca(2+) entry. However, the magnitude of the increase in [Ca(2+)](i) in 2- but not 1-wk-old mutant orpk animals was blunted. We speculate that this defect in mechano-induced Ca(2+) signaling in orpk mice leads to aberrant structure and function of the collecting duct in ARPKD.
  • Published In


  • Animals, Calcium, Cilia, Dilatation, Pathologic, Fluorescent Dyes, Fluorometry, Fura-2, Kidney Tubules, Collecting, Mice, Mutation, Polycystic Kidney, Autosomal Recessive, Tumor Suppressor Proteins, Urodynamics
  • Digital Object Identifier (doi)

    Author List

  • Liu W; Murcia NS; Duan Y; Weinbaum S; Yoder BK; Schwiebert E; Satlin LM
  • Start Page

  • F978
  • End Page

  • F988
  • Volume

  • 289
  • Issue

  • 5