Regulation of epithelial sodium channels by short actin filaments.

Academic Article

Abstract

  • Cytoskeletal elements play an important role in the regulation of ion transport in epithelia. We have studied the effects of actin filaments of different length on the alpha, beta, gamma-rENaC (rat epithelial Na+ channel) in planar lipid bilayers. We found the following. 1) Short actin filaments caused a 2-fold decrease in unitary conductance and a 2-fold increase in open probability (Po) of alpha,beta,gamma-rENaC. 2) alpha,beta,gamma-rENaC could be transiently activated by protein kinase A (PKA) plus ATP in the presence, but not in the absence, of actin. 3) ATP in the presence of actin was also able to induce a transitory activation of alpha, beta,gamma-rENaC, although with a shortened time course and with a lower magnitude of change in Po. 4) DNase I, an agent known to prohibit elongation of actin filaments, prevented activation of alpha,beta,gamma-rENaC by ATP or PKA plus ATP. 5) Cytochalasin D, added after rundown of alpha,beta,gamma-rENaC activity following ATP or PKA plus ATP treatment, produced a second transient activation of alpha,beta,gamma-rENaC. 6) Gelsolin, a protein that stabilizes polymerization of actin filaments at certain lengths, evoked a sustained activation of alpha,beta,gamma-rENaC at actin/gelsolin ratios of <32:1, with a maximal effect at an actin/gelsolin ratio of 2:1. These results suggest that short actin filaments activate alpha, beta,gamma-rENaC. PKA-mediated phosphorylation augments activation of this channel by decreasing the rate of elongation of actin filaments. These results are consistent with the hypothesis that cloned alpha,beta,gamma-rENaCs form a core conduction unit of epithelial Na+ channels and that interaction of these channels with other associated proteins, such as short actin filaments, confers regulation to channel activity.
  • Published In

    Keywords

  • Actins, Adenosine Triphosphate, Animals, Cytoskeleton, Epithelium, Ion Channel Gating, Lipid Bilayers, Rats, Recombinant Proteins, Sodium Channels
  • Author List

  • Berdiev BK; Prat AG; Cantiello HF; Ausiello DA; Fuller CM; Jovov B; Benos DJ; Ismailov II
  • Start Page

  • 17704
  • End Page

  • 17710
  • Volume

  • 271
  • Issue

  • 30