TREM-like transcript 2 is stored in human neutrophil primary granules and is up-regulated in response to inflammatory mediators

Academic Article

Abstract

  • © Society for Leukocyte Biology. The triggering receptor expressed on myeloid cell locus encodes a family of receptors that is emerging as an important class of molecules involved in modulating the innate immune response and inflammation. Of the 4 conserved members, including triggering receptor expressed on myeloid cells 1 and 2 and triggering receptor expressed on myeloid cell-like transcripts 1 and 2, relatively little is known about triggering receptor expressed on myeloid cell-like transcript 2 expression and function, particularly in humans. In this study, experiments were performed to determine if triggering receptor expressed on myeloid cell-like transcript 2 expression is conserved between mouse and human, demonstrating that human triggering receptor expressed on myeloid cell-like transcript 2 is expressed on cells of the lymphoid, as well as myeloid/granuloid lineages, similar to murine triggering receptor expressed on myeloid cell-like transcript 2. Consistent with studies in the mouse, triggering receptor expressed on myeloid cell-like transcript 2 expression is up-regulated in response to inflammatory mediators on human neutrophils. Importantly, it was shown that triggering receptor expressed on myeloid cell-like transcript 2, in resting human neutrophils, is predominantly localized to intracellular vesicles, including secretory vesicles and primary granules; with the majority of triggering receptor expressed on myeloid cell-like transcript 2 stored in primary granules. In contrast to other primary granule proteins, triggering receptor expressed on myeloid celllike transcript 2 is not expelled on neutrophil extracellular traps but is retained in the plasma membrane following primary granule exocytosis. In summary, these findings establish that triggering receptor expressed on myeloid cell-like transcript 2 expression is conserved between species and is likely to be important in regulating neutrophil antimicrobial function following primary granule exocytosis.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Thomas KA; King RG; Sestero CM; Justement LB
  • Start Page

  • 177
  • End Page

  • 184
  • Volume

  • 100
  • Issue

  • 1