Protein kinases A and C in post-mortem prefrontal cortex from persons with major depression and normal controls

Academic Article

Abstract

  • Major depression (MDD) is a common and potentially life-threatening condition. Widespread neurobiological abnormalities suggest abnormalities in fundamental cellular mechanisms as possible physiological mediators. Cyclic AMP-dependent protein kinase [also known as protein kinase A (PKA)] and protein kinase C (PKC) are important components of intracellular signal transduction cascades that are linked to G-coupled receptors. Previous research using both human peripheral and post-mortem brain tissue specimens suggests that a subset of depressed patients exhibit reduced PKA and PKC activity, which has been associated with reduced levels of specific protein isoforms. Prior research also suggests that specific clinical phenotypes, particularly melancholia and suicide, may be particularly associated with low activity. This study examined PKA and PKC protein levels in human post-mortem brain tissue samples from persons with MDD (n=20) and age- and sex-matched controls (n=20). Specific PKA subunits and PKC isoforms were assessed using Western blot analysis in post-mortem samples from Brodmann area 10, which has been implicated in reinforcement and reward mechanisms. The MDD sample exhibited significantly lower protein expression of PKA regulatory Iα (RIα), PKA catalytic α (Cα) and Cβ, PKCβ1, and PKC relative to controls. The melancholic subgroup showed low PKA RIα and PKA Cβ, while the portion of the MDD sample who died by suicide had low PKA RIα and PKA Cα. These data continue to support the significance of abnormalities of these two key kinases, and suggest linkages between molecular endophenotypes and specific clinical phenotypes. © CINP 2009.
  • Digital Object Identifier (doi)

    Author List

  • Shelton RC; Hal Manier D; Lewis DA
  • Start Page

  • 1223
  • End Page

  • 1232
  • Volume

  • 12
  • Issue

  • 9