Negative regulation of NADPH oxidase 4 by Hydrogen peroxide-inducible clone 5 (Hic-5) protein

Academic Article

Abstract

  • Hydrogen peroxide-inducible clone 5 (Hic-5) is a focal adhesion adaptor protein induced by the profibrotic cytokine TGF-β1. We have demonstrated previously that TGF-β1 induces myofibroblast differentiation and lung fibrosis by activation of the reactive oxygen species-generating enzymeNADPHoxidase 4 (Nox4). Here we investigated a potential role for Hic-5 in regulating Nox4, myofibroblast differentiation, and senescence. In normal human diploid fibroblasts, TGF-β1 induces Hic-5 expression in a delayed manner relative to the induction of Nox4 and myofibroblast differentiation. Hic-5 silencing induced constitutive Nox4 expression and enhanced TGF-β1- inducible Nox4 levels. The induction of constitutive Nox4 protein in Hic-5-silenced cells was independent of transcription and translation and controlled by the ubiquitin-proteasomal system. Hic-5 associates with the ubiquitin ligase Cbl-c and the ubiquitin-binding protein heat shock protein 27 (HSP27). The interaction of these proteins is required for the ubiquitination of Nox4 and for maintaining low basal levels of this reactive oxygen species-generating enzyme. Our model suggests that TGF-β1-induced Hic-5 functions as a negative feedback mechanism to limit myofibroblast differentiation and senescence by promoting the ubiquitin-proteasomal system-mediated degradation of Nox4. Together, these studies indicate that endogenous Hic-5 suppresses senescence and profibrotic activities of myofibroblasts by down-regulating Nox4 protein expression. Additionally, these are the first studies, to our knowledge, to demonstrate posttranslational regulation of Nox4. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Desai LP; Zhou Y; Estrada AV; Ding Q; Cheng G; Collawn JF; Thannickal VJ
  • Start Page

  • 18270
  • End Page

  • 18278
  • Volume

  • 289
  • Issue

  • 26