Disulfiram and copper ions kill Mycobacterium tuberculosis in a synergistic manner

Academic Article

Abstract

  • Copyright © 2015, American Society for Microbiology. All Rights Reserved. Tuberculosis is a severe disease affecting millions worldwide. Unfortunately, treatment strategies are hampered both by the prohibitively long treatment regimen and the rise of drug-resistant strains. Significant effort has been expended in the search for new treatments, but few options have successfully emerged, and new treatment modalities are desperately needed. Recently, there has been growing interest in the synergistic antibacterial effects of copper ions (CuII/I) in combination with certain small molecular compounds, and we have previously reported development of a drug screening strategy to harness the intrinsic bactericidal properties of CuII/I. Here, we describe the copper-dependent antimycobacterial properties of disulfiram, an FDA-approved and well-tolerated sobriety aid. Disulfiram was inhibitory to mycobacteria only in the presence of CuII/I and exerted its bactericidal activity well below the active concentration of CuII/I or disulfiram alone. No other physiologically relevant bivalent transition metals (e.g., FeII, NiII, MnII, and CoII) exhibited this effect. We demonstrate that the movement of the disulfiram-copper complex across the cell envelope is porin independent and can inhibit intracellular protein functions. Additionally, the complex is able to synergistically induce intracellular copper stress responses significantly more than CuII/I alone. Our data suggest that by complexing with disulfiram, CuII/I is likely allowed unfettered access to vulnerable intracellular components, bypassing the normally sufficient copper homeostatic machinery. Overall, the synergistic antibacterial activity of CuII/I and disulfiram reveals the susceptibility of the copper homeostasis system of Mycobacterium tuberculosis to chemical attacks and establishes compounds that act in concert with copper as a new class of bacterial inhibitors.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Dalecki AG; Haeili M; Shah S; Speer A; Niederweis M; Kutsch O; Wolschendorf F
  • Start Page

  • 4835
  • End Page

  • 4844
  • Volume

  • 59
  • Issue

  • 8