Using a tropism-modified adenoviral vector to circumvent inhibitory factors in ascites fluid.

Academic Article

Abstract

  • Peritoneal compartmentalization of advanced stage ovarian cancer provides a rational scenario for gene therapy strategies. Several groups are exploring intraperitoneal administration of adenoviral (Ad) vectors for this purpose. We examined in vitro gene transfer in the presence of ascites fluid from ovarian cancer patients and observed significant inhibition of Ad-mediated gene transfer. The inhibitory activity was not identified as either complement or cellular factors, but depletion of IgG from ascites removed the inhibitory activity, implicating neutralizing anti-Ad antibodies. A wide range of preexisting anti-Ad antibody titers in patient ascites fluid was measured by ELISA. Western blot analysis demonstrated that the antibodies were directed primarily against the Ad fiber protein. To circumvent inhibition by neutralizing antibodies, a genetically modified adenoviral vector was tested. The Ad5Luc.RGD vector has an Arg-Gly-Asp (RGD) peptide sequence inserted into the fiber knob domain and enters cells through a nonnative pathway. Compared with the conventional Ad5 vector, Ad5Luc.RGD directed efficient gene transfer to cell lines and primary ovarian cancer cells in the presence of ascites fluid containing high-titer neutralizing anti-Ad antibodies. These results suggest that such modified Ad vectors will be needed to achieve efficient gene transfer in the clinical setting.
  • Authors

    Published In

  • Human Gene Therapy  Journal
  • Keywords

  • Adenocarcinoma, Adenoviridae, Antibodies, Ascites, Ascitic Fluid, Blotting, Western, Enzyme-Linked Immunosorbent Assay, Female, Genetic Therapy, Genetic Vectors, Humans, In Vitro Techniques, Ovarian Neoplasms, Tropism, Tumor Cells, Cultured
  • Digital Object Identifier (doi)

    Authorlist

  • Blackwell JL; Li H; Gomez-Navarro J; Dmitriev I; Krasnykh V; Richter CA; Shaw DR; Alvarez RD; Curiel DT; Strong TV
  • Start Page

  • 1657
  • End Page

  • 1669
  • Volume

  • 11
  • Issue

  • 12