Computerized rapid high resolution quantitative analysis of plasma lipoproteins based upon single vertical spin centrifugation

Academic Article

Abstract

  • A method has been developed for rapidly quantitating the cholesterol concentration of normal and certain variant lipoproteins in a large number of patients (over 240 in one week). The method employs a microcomputer interfaced to the vertical autoprofiler (VAP) described earlier. Software developed to accomplish rapid on-line analysis of the VAP signal uses peak shapes and positions derived from prior VAP analysis of isolated authentic lipoproteins HDL, LDL, and VLDL to quantitate these species in a VAP profile. Variant lipoproteins VHDL (a species with density greater than that of HDL 3), MDL (a species, most likely Lp(a), with density intermediate between that of HDL and LDL), and IDL are subsequently quantitated by a method combining difference calculations with curve shapes. The procedure has been validated qualitatively by negative stain electron microscopy, gradient gel electrophoresis, strip electrophoresis, chemical analysis of the lipids, radioimmunoassay of the apolipoproteins, and measurement of the density of the peak centers. It has been validated quantitatively by comparison with Lipid Research Clinic methodology for HDL-, LDL-, and VLDL-cholesterol, and for MDL- and IDL-cholesterol by comparison of the amounts of MDL or IDL predicted to be present by the method with that known to be present following standard addition to whole plasma. These validations show that the method is a rapid and accurate technique of lipoprotein analysis suitable for the routine screening of patients for abnormal amounts of normal or variant lipoproteins, as well as for use as a research tool for quantitation of changes in cholesterol content of six or seven different plasma lipoprotein fractions.
  • Authors

    Published In

    Author List

  • Cone JT; Segrest JP; Chung BH; Ragland JB; Sabesin SM; Glasscock A
  • Start Page

  • 923
  • End Page

  • 935
  • Volume

  • 23
  • Issue

  • 6