Electrophoretic methods for analysis of urinary polypeptides in lgA-associated renal diseases

Academic Article

Abstract

  • We evaluated the utility of SDS-PAGE/Western blot and CE coupled with MS (CE-MS) for detection of urinary polypeptide biomarkers of renal disease in patients with IgA-associated glomerulonephritides. In a reference cohort of 402 patients with various renal disorders and 207 healthy controls, we defined CE-MS patterns of renal damage and IgA nephropathy (IgAN). In a blinded analysis of a separate cohort of patients with IgAN (n = 10), Henoch-Schoenlein purpura (HSP) with nephritis (n = 10), and IgA-associated glomerulonephritis due to hepatitis C virus (HCV)-induced cirrhosis (n = 9), and healthy controls (n = 12), we compared SDS-PAGE/ Western blot and CE-MS against clinical urinalysis for detection of urinary proteins/polypeptides. Urinalysis indicated proteinuria for 50, 90, and 33% of patients, respectively, and for none of the healthy controls. SDS-PAGE/Western blot showed urinary polypeptides abnormality for 90, 80, and 67% of patients, respectively, and for none of the healthy controls. CE-MS indicated a Renal Damage Pattern in 80, 80, and 100 of patients, respectively, and in 17% of healthy controls, with the more specific IgAN Pattern in 90, 90, and 1%, respectively, and in none of the healthy controls. Based on differences in CE-MS patterns, the disease mechanisms may differ among various IgA-agsociated glomerulonephritides. These exploratory findings should be evaluated in a prospective study with contemporaneous renal biopsy and urinary testing. If validated, it may be feasible to adapt the CE-MS methodology to develop novel tests to detect renal injury at earlier stages, assess clinical manifestations, and monitor responses to therapy in patients with IgA-associated renal diseases. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Published In

  • ELECTROPHORESIS  Journal
  • Digital Object Identifier (doi)

    Author List

  • Julian BA; Wittke S; Novak J; Good DM; Coon JJ; Kellmann M; Zürbig P; Schiffer E; Haubitz M; Moldoveanu Z
  • Start Page

  • 4469
  • End Page

  • 4483
  • Volume

  • 28
  • Issue

  • 23