Successful granulocyte-colony stimulating factor treatment of Crohn's disease is associated with the appearance of circulating interleukin-10- producing T cells and increased lamina propria plasmacytoid dendritic cells

Academic Article


  • Granulocyte-colony stimulating factor (G-CSF) has proved to be a successful therapy for some patients with Crohn's disease. Given the known ability of G-CSF to exert anti-T helper 1 effects and to induce interleukin (IL)-10-secreting regulatory T cells, we studied whether clinical benefit from G-CSF therapy in active Crohn's disease was associated with decreased inflammatory cytokine production and/or increased regulatory responses. Crohn's patients were treated with G-CSF (5 μg/kg/day subcutaneously) for 4 weeks and changes in cell phenotype, cytokine production and dendritic cell subsets were measured in the peripheral blood and colonic mucosal biopsies using flow cytometry, enzyme-linked immunosorbent assay and immunocytochemistry. Crohn's patients who achieved a clinical response or remission based on the decrease in the Crohn's disease activity index differed from non-responding patients in several important ways: at the end of treatment, responding patients had significantly more CD4+ memory T cells producing IL-10 in the peripheral blood; they also had a greatly enhanced CD123+ plasmacytoid dendritic cell infiltration of the lamina propria. Interferon-γ production capacity was not changed significantly except in non-responders, where it increased. These data show that clinical benefit from G-CSF treatment in Crohn's disease is accompanied by significant induction of IL-10 secreting T cells as well as increases in plasmacytoid dendritic cells in the lamina propria of the inflamed gut mucosa. © 2008 British Society for Immunology.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Mannon PJ; Leon F; Fuss IJ; Walter BA; Begnami M; Quezado M; Yang Z; Yi C; Groden C; Friend J
  • Start Page

  • 447
  • End Page

  • 456
  • Volume

  • 155
  • Issue

  • 3