Simultaneous quantification of F2-isoprostanes and prostaglandins in human urine by liquid chromatography tandem-mass spectrometry.

Academic Article

Abstract

  • A specific and sensitive LC-MS/MS method for analysis of F(2)-isoprostanes (F(2)-IsoPs) and prostaglandins (PGs) in urine was developed and validated to examine the levels of F(2)-IsoPs and prostaglandin F(2α) (PGF(2α)), in human urine in patients undergoing cardiac surgery. The rapid extraction for F(2)-IsoPs and PGs from urine was achieved using a polymeric weak anion solid phase extraction cartridge. The base-line separation of 8-iso-PGF(2α), 8-iso-15(R)-PGF(2α), PGF(2α), and 15(R)-PGF(2α) was carried out on a Hydro-RP column (250mm×2.0mm i.d., Phenomenex, CA) using a linear gradient of methanol:acetonitrile (1:1, v/v) in 0.1% formic acid at a flow rate of 0.2mL/min. The method was proved to be accurate and precise for simultaneous quantification of each analyte over a linear dynamic range of 0.05-50ng/mL with correlation coefficients greater than 0.99. The intra-day and inter-day assay precision at the lowest quality control (0.07ng/mL) level were less than 17%. The mean extraction recoveries of F(2)-IsoPs and PGs were in a range of 79-100%. In applications of this method to patients undergoing cardiac surgery, post-surgery urinary concentrations of 8-iso-PGF(2α) increased significantly in patients (n=14) who did not develop acute kidney (AKI) (pre-surgery 0.344±0.039 vs. post-surgery 0.682±0.094ng/mg creatinine, p<0.01), whereas there was no significant change in this isoprostane in the patients (n=4) who developed AKI (pre-surgery 0.298±0.062 vs. post-surgery 0.383±0.117ng/mg creatinine, NS). Therefore, the method is suitable for the analysis of individual F(2)-IsoPs and PGF(2α)'s in both clinical and research studies.
  • Keywords

  • Chromatography, Liquid, F2-Isoprostanes, Humans, Prostaglandins, Reproducibility of Results, Sensitivity and Specificity, Tandem Mass Spectrometry
  • Digital Object Identifier (doi)

    Author List

  • Prasain JK; Arabshahi A; Taub PR; Sweeney S; Moore R; Sharer JD; Barnes S
  • Start Page

  • 161
  • End Page

  • 168
  • Volume

  • 913-914