Preventing β-cell loss and diabetes with calcium channel blockers

Academic Article

Abstract

  • Although loss of functional β-cell mass is a hallmark of diabetes, no treatment approaches that halt this process are currently available. We recently identified thioredoxin-interacting protein (TXNIP) as an attractive target in this regard. Glucose and diabetes upregulate β-cell TXNIP expression, and TXNIP overexpression induces β-cell apoptosis. In contrast, genetic ablation of TXNIP promotes endogenous β-cell survival and prevents streptozotocin (STZ)- and obesity-induced diabetes. Finding an oral medication that could inhibit β-cell TXNIP expression would therefore represent a major breakthrough. We were surprised to discover that calcium channel blockers inhibited TXNIP expression in INS-1 cells and human islets and that orally administered verapamil reduced TXNIP expression and β-cell apoptosis, enhanced endogenous insulin levels, and rescued mice from STZ-induced diabetes. Verapamil also promoted β-cell survival and improved glucose homeostasis and insulin sensitivity in BTBR ob/ob mice. Our data further suggest that this verapamil-mediated TXNIP repression is conferred by reduction of intracellular calcium, inhibition of calcineurin signaling, and nuclear exclusion and decreased binding of carbohydrate response element-binding protein to the E-box repeat in the TXNIP promoter. Thus, for the first time, we have identified an oral medication that can inhibit proapoptotic β-cell TXNIP expression, enhance β-cell survival and function, and prevent and even improve overt diabetes. © 2012 by the American Diabetes Association.
  • Authors

    Published In

  • Diabetes  Journal
  • Digital Object Identifier (doi)

    Author List

  • Xu G; Chen J; Jing G; Shalev A
  • Start Page

  • 848
  • End Page

  • 856
  • Volume

  • 61
  • Issue

  • 4