In vivo gene therapy of cancer with E. coli purine nucleoside phosphorylase.

Academic Article

Abstract

  • We have developed a new strategy for the gene therapy of cancer based on the activation of purine nucleoside analogs by transduced E. coli purine nucleoside phosphorylase (PNP, E.C. 2.4.2.1). The approach is designed to generate antimetabolites intracellularly that would be too toxic for systemic administration. To determine whether this strategy could be used to kill tumor cells without host toxicity, nude mice bearing human malignant D54MG glioma tumors expressing E. coli PNP (D54-PNP) were treated with either 6-methylpurine-2'-deoxyriboside (MeP-dR) or arabinofuranosyl-2-fluoroadenine monophosphate (F-araAMP, fludarabine, a precursor of F-araA). Both prodrugs exhibited significant antitumor activity against established D54-PNP tumors at doses that produced no discernible systemic toxicity. Significantly, MeP-dR was curative against this slow growing solid tumor after only 3 doses. The antitumor effects showed a dose dependence on both the amount of prodrug given and the level of E. coli PNP expression within tumor xenografts. These results indicated that a strategy using E. coli PNP to create highly toxic, membrane permeant compounds that kill both replicating and nonreplicating cells is feasible in vivo, further supporting development of this cancer gene therapy approach.
  • Published In

  • Human Gene Therapy  Journal
  • Keywords

  • Animals, Antimetabolites, Antineoplastic, Escherichia coli, Genetic Therapy, Genetic Vectors, Glioma, Humans, Mice, Mice, Nude, Neoplasm Transplantation, Prodrugs, Purine Nucleosides, Purine-Nucleoside Phosphorylase, Retroviridae, Vidarabine Phosphate
  • Digital Object Identifier (doi)

    Authorlist

  • Parker WB; King SA; Allan PW; Bennett LL; Secrist JA; Montgomery JA; Gilbert KS; Waud WR; Wells AH; Gillespie GY
  • Start Page

  • 1637
  • End Page

  • 1644
  • Volume

  • 8
  • Issue

  • 14