Moderate aerobic exercise alters migration patterns of antigen specific T helper cells within an asthmatic lung

Academic Article

Abstract

  • Studies have indicated increased incidence and severity of allergic asthma due to western lifestyle and increased sedentary activity. Investigations also indicate that exercise reduces the severity of asthma; however, a mechanism of action has not been elucidated. Additional work implicates re-distribution of T helper (Th) cells in mediating alterations of the immune system as a result of moderate aerobic exercise in vivo. We have previously reported that exercise decreases T helper 2 (Th2) responses within the lungs of an ovalbumin (OVA)-sensitized murine allergic asthma model. Therefore, we hypothesized that exercise alters the migration of OVA-specific Th cells in an OVA-challenged lung. To test this hypothesis, wildtype mice received OVA-specific Th cells expressing a luciferase-reporter construct and were OVA-sensitized and exercised. OVA-specific Th cell migration was decreased in OVA-challenged lungs of exercised mice when compared to their sedentary controls. Surface expression levels of lung-homing chemokine receptors, CCR4 and CCR8, on Th cells and their cognate lung-homing chemokine gradients revealed no difference between exercised and sedentary OVA-sensitized mice. However, transwell migration experiments demonstrated that lung-derived Th cells from exercised OVA-sensitized mice exhibited decreased migratory function versus controls. These data suggest that Th cells from exercised mice are less responsive to lung-homing chemokine. Together, these studies demonstrate that moderate aerobic exercise training can reduce the accumulation of antigen-specific Th cell migration into an asthmatic lung by decreasing chemokine receptor function. © 2013 Elsevier Inc.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Dugger KJ; Chrisman T; Jones B; Chastain P; Watson K; Estell K; Zinn K; Schwiebert L
  • Start Page

  • 67
  • End Page

  • 78
  • Volume

  • 34