Repeated bouts of moderate-intensity aerobic exercise reduce airway reactivity in a murine asthma model

Academic Article

Abstract

  • We have reported that moderate-intensity aerobic exercise training attenuates airway inflammation in mice sensitized/challenged with ovalbumin (OVA). The current study determined the effects of repeated bouts of aerobic exercise at a moderate intensity on airway hyperresponsiveness (AHR) in these mice. Mice were sensitized/ challenged with OVA or saline and exercised at a moderate intensity 3 times/week for 4 weeks. At protocol completion, mice were analyzed for changes in AHR via mechanical ventilation. Results show that exercise decreased total lung resistance 60% in OVAtreated mice as compared with controls; exercise also decreased airway smooth muscle (ASM) thickness. In contrast, exercise increased circulating epinephrine levels 3-fold in saline- and OVAtreated mice. Because epinephrine binds β2-adrenergic receptors (AR), which facilitate bronchodilatation, the role of β2-AR in exercise-mediated improvements in AHR was examined. Application of the β2-AR antagonist butoxamine HCl blocked the effects of exercise on lung resistance in OVA-treated mice. In parallel, ASM cells were examined for changes in the protein expression of β2-AR and G-protein receptor kinase-2 (GRK-2); GRK-2 promotes β2-AR desensitization. Exercise had no effect on β2-AR expression in ASM cells of OVA-treated mice; however, exercise decreased GRK-2 expression by 50% as compared with controls. Exercise also decreased prostaglandin E2 (PGE2) production 5-fold, but had no effect on E prostanoid-1 (EP1) receptor expression within the lungs of OVA-treated mice; both PGE2 and the EP1 receptor have been implicated in β2-AR desensitization. Together, these data indicate that moderate-intensity aerobic exercise training attenuatesAHRvia a mechanism that involves β2-AR.
  • Digital Object Identifier (doi)

    Author List

  • Hewitt M; Estell K; Davis IC; Schwiebert LM
  • Start Page

  • 243
  • End Page

  • 249
  • Volume

  • 42
  • Issue

  • 2