Experimental and analytical study of carbon fiber-reinforced polymer (FRP)/autoclaved aerated concrete (AAC) sandwich panels

Academic Article

Abstract

  • The structural behavior of hybrid fiber-reinforced polymer (FRP)-autoclaved aerated concrete (AAC) panels has been investigated. FRP laminates can be used to reinforce externally the plain AAC producing a very high stiff panel. The resulting hybrid FRP/AAC panel can be used as structural or non-structural member for the housing construction. In order to accomplish this, FRP/AAC panels have been fabricated and prepared for testing. The specimens have been processed using the advanced semi-mechanical processing technique VARTM (Vacuum Assisted Resin Transfer Molding). The concept of the FRP/AAC panel is based on the theory of sandwich construction with strong and stiff skins, like FRP composites, bonded to a core material, like AAC panel. The FRP composite material was made of carbon reinforcing fabrics embedded in an epoxy resin matrix. The panels were tested under four-point bending test to investigate their strength and ductility responses using a Tinius-Olsen Universal Testing Machine. Experimental results showed a significant influence of FRP laminates on both strength and ductility of the FRP/AAC panels. A theoretical analysis was conducted to predict the strength of the FRP/AAC member and results found were in good accordance with the experimental ones. © 2009 Elsevier Ltd. All rights reserved.
  • Authors

    Published In

    Digital Object Identifier (doi)

    Author List

  • Mousa MA; Uddin N
  • Start Page

  • 2337
  • End Page

  • 2344
  • Volume

  • 31
  • Issue

  • 10