Genetic variants associated with methotrexate efficacy and toxicity in early rheumatoid arthritis: results from the treatment of early aggressive rheumatoid arthritis trial.

Academic Article


  • Methotrexate (MTX) has emerged as first-line therapy for early moderate-to-severe rheumatoid arthritis (RA), but individual variation in treatment response remains unexplained. We tested the associations between 863 known pharmacogenetic variants and MTX response in 471 Treatment of Early Aggressive Rheumatoid Arthritis Trial participants with early RA. Efficacy and toxicity were modeled using multiple regression, adjusted for demographic and clinical covariates. Penalized regression models were used to test joint associations of markers and/or covariates with the outcomes. The strongest genetic associations with efficacy were in CHST11 (five markers with P<0.003), encoding carbohydrate (chondroitin 4) sulfotransferase 11. Top markers associated with MTX toxicity were in the cytochrome p450 genes CYP20A1 and CYP39A1, solute carrier genes SLC22A2 and SLC7A7, and the mitochondrial aldehyde dehydrogenase gene ALDH2. The selected markers explained a consistently higher proportion of variation in toxicity than efficacy. These findings could inform future development of personalized therapeutic approaches.
  • Published In


  • Antirheumatic Agents, Arthritis, Rheumatoid, Biomarkers, Female, Genetic Variation, Humans, Male, Methotrexate, Middle Aged, Multivariate Analysis, Randomized Controlled Trials as Topic, Regression Analysis, Severity of Illness Index, Time Factors, Treatment Outcome
  • Digital Object Identifier (doi)

    Author List

  • Aslibekyan S; Brown EE; Reynolds RJ; Redden DT; Morgan S; Baggott JE; Sha J; Moreland LW; O'Dell JR; Curtis JR
  • Start Page

  • 48
  • End Page

  • 53
  • Volume

  • 14
  • Issue

  • 1