1H, 13C and 15N resonance assignment of the SARS-CoV-2 full-length nsp1 protein and its mutants reveals its unique secondary structure features in solution

Academic Article

Abstract

  • Structural characterization of the SARS-CoV-2 full length nsp1 protein will be an essential tool for developing new target-directed antiviral drugs against SARS-CoV-2 and for further understanding of intra- and intermolecular interactions of this protein. As a first step in the NMR studies of the protein, we report the 1H, 13C and 15N resonance backbone assignment as well as the Cβ of the apo form of the full-lengthSARS-CoV-2 nsp1 including the folded domain together with the flaking N- and C- terminal intrinsically disordered fragments. The 19.8 kD protein was characterized by high-resolution NMR. Validation of assignment have been done by using two different mutants, H81P and K129E/D48E as well as by amino acid specific experiments. According to the obtained assignment, the secondary structure of the folded domain in solution was almost identical to its previously published X-ray structure as well as another published secondary structure obtained by NMR, but some discrepancies have been detected. In the solution SARS-CoV-2 nsp1 exhibited disordered, flexible N- and C-termini with different dynamic characteristics. The short peptide in the beginning of the disordered C-terminal domain adopted two different conformations distinguishable on the NMR time scale. We propose that the disordered and folded nsp1 domains are not fully independent units but are rather involved in intramolecular interactions. Studies of the structure and dynamics of the SARS-CoV-2 mutant in solution are on-going and will provide important insights into the molecular mechanisms underlying these interactions.
  • Published In

  • PLoS One  Journal
  • Digital Object Identifier (doi)

    Pubmed Id

  • 28330657
  • Author List

  • Agback T; Dominguez F; Frolov I; Frolova EI; Agback P
  • Volume

  • 16
  • Issue

  • 12 December