Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering

Academic Article

Abstract

  • Aligned nanofibrous scaffolds based on poly(d,l-lactide-co-glycolide) (PLGA) and nano-hydroxyapatite (nano-HA) were synthesized by electrospinning for bone tissue engineering. Morphological characterization using scanning electron microscopy showed that the addition of different amounts of nano-HA (1, 5, 10 and 20 wt.%) increased the average fiber diameter from 300 nm (neat PLGA) to 700 nm (20% nano-HA). At higher concentrations (≥10%), agglomeration of HA was observed and this had a marked effect at 20% concentration whereby the presence of nano-HA resulted in fiber breaking. Thermal characterization showed that the fast processing of electrospinning locked in the amorphous character of PLGA; this resulted in a decrease in the glass transition temperature of the scaffolds. Furthermore, an increase in the glass transition temperature was observed with increasing nano-HA concentration. The dynamic mechanical behavior of the scaffolds reflected the morphological observation, whereby nano-HA acted as reinforcements at lower concentrations (1% and 5%) but acted as defects at higher concentrations (10% and 20%). The storage modulus value of the scaffolds increased from 441 MPa for neat PLGA to 724 MPa for 5% nano-HA; however, further increasing the concentration leads to a decrease in storage modulus, to 371 MPa for 20% nano-HA. Degradation characteristics showed that hydrophilic nano-HA influenced phosphate-buffered saline uptake and mass loss. The mechanical behavior showed a sinusoidal trend with a slight decrease in modulus by week 1 due to the plasticizing effect of the medium followed by an increase due to shrinkage, and a subsequent drop by week 6 due to degradation. © 2008 Acta Materialia Inc.
  • Authors

    Published In

  • Acta Biomaterialia  Journal
  • Digital Object Identifier (doi)

    Author List

  • Jose MV; Thomas V; Johnson KT; Dean DR; Nyairo E
  • Start Page

  • 305
  • End Page

  • 315
  • Volume

  • 5
  • Issue

  • 1