Spt4 promotes pol i processivity and transcription elongation

Academic Article

Abstract

  • RNA polymerases (Pols) I, II, and III collectively synthesize most of the RNA in a eukaryotic cell. Transcription by Pols I, II, and III is regulated by hundreds of trans-acting factors. One such protein, Spt4, has been previously identified as a transcription factor that influences both Pols I and II. Spt4 forms a complex with Spt5, described as the Spt4/5 complex (or DSIF in mammalian cells). This complex has been shown previously to directly interact with Pol I and potentially affect transcription elongation. The previous literature identified defects in transcription by Pol I when SPT4 was deleted, but the necessary tools to characterize the mechanism of this effect were not available at the time. Here, we use a technique called Native Elongating Transcript Sequencing (NET-seq) to probe for the global occupancy of Pol I in wild-type (WT) and spt4â–³Saccharomyces cerevisiae (yeast) cells at single nucleotide resolution in vivo. Analysis of NET-seq data reveals that Spt4 promotes Pol I processivity and enhances transcription elongation through regions of the ribosomal DNA that are particularly G-rich. These data suggest that Spt4/5 may directly affect transcription elongation by Pol I in vivo.
  • Published In

  • Genes  Journal
  • Digital Object Identifier (doi)

    Pubmed Id

  • 20277732
  • Author List

  • Huffines AK; Edwards YJK; Schneider DA
  • Volume

  • 12
  • Issue

  • 3