Protective role of HO-1 against acute kidney injury caused by cutaneous exposure to arsenicals.

Academic Article

Abstract

  • Lewisite and many other similar arsenicals are warfare vesicants developed and weaponized for use in World Wars I and II. These chemicals, when exposed to the skin and other epithelial tissues, cause rapid severe inflammation and systemic damage. Here, we show that topically applied arsenicals in a murine model produce significant acute kidney injury (AKI), as determined by an increase in the AKI biomarkers NGAL and KIM-1. An increase in reactive oxygen species and ER stress proteins, such as ATF4 and CHOP, correlated with the induction of these AKI biomarkers. Also, TUNEL staining of CHOP-positive renal tubular cells suggests CHOP mediates apoptosis in these cells. A systemic inflammatory response characterized by a significant elevation in inflammatory mediators, such as IL-6, IFN-α, and COX-2, in the kidney could be the underlying cause of AKI. The mechanism of arsenical-mediated inflammation involves activation of AMPK/Nrf2 signaling pathways, which regulate heme oxygenase-1 (HO-1). Indeed, HO-1 induction with cobalt protoporphyrin (CoPP) treatment in arsenical-treated HEK293 cells afforded cytoprotection by attenuating CHOP-associated apoptosis and cytokine mRNA levels. These results demonstrate that topical exposure to arsenicals causes AKI and that HO-1 activation may serve a protective role in this setting.
  • Keywords

  • acute kidney injury, arsenicals, cobalt protoporphyrin, heme oxygenase-1
  • Digital Object Identifier (doi)

    Pubmed Id

  • 13140208
  • Author List

  • Srivastava RK; Muzaffar S; Khan J; Traylor AM; Zmijewski JW; Curtis LM; George JF; Ahmad A; Antony VB; Agarwal A