Requirements for modulation of the CD4 molecule in response to phorbol myristate acetate. Role of the cytoplasmic domain

Academic Article


  • CD4 (T4) is a 60 kD glycoprotein expressed on a subset of T lymphocytes. CD4 augments T cell responses to suboptimal Ag stimulation. In addition, the CD4 molecule is the receptor for HIV-1. CD4 is phosphorylated on serine residues within the cytoplasmic domain and its cell surface expression is decreased in response to PMA, APC bearing the appropriate Ag or HIV infection. The kinetics of CD4 phosphorylation and modulation are similar, suggesting that the two events may be related. L3T4, the murine CD4 equivalent, is not modulated from the surface of mature, peripheral T cells in response to PMA. The difference in the ability to modulate L3T4 and CD4 in response to PMA may be due to differences between the two molecules or to differences between the cells in which they are expressed. To further define the requirements for CD4 modulation, we used retroviral vectors to transfer the cDNA for CD4 and various amounts of CD4 into two murine T cell hybridomas that express L3T4. One of these hybridomas, By155.16, does not modulate L3T4 in response to PMA and the other, 5D5.63, does modulate L3T4 in response to PMA. When expressed by these hybridomas CD4 is not modulated from the surface of By155.16 and is modulated from the surface of 5D5.63 in response to PMA. In both of these hybridomas, CD4 is phosphorylated on serine residues in response to PMA. A mutant form of CD4, CD4Δ, was constructed in which the majority of the cytoplasmic domain was deleted. When expressed in 5D5.63, CD4Δ was not modulated in response to PMA. Replacing the cytoplasmic domain of CD4 with that of the human IL-2 receptor did not reconstitute the ability of CD4 to be modulated. These results suggest that the inability to modulate L3T4 from the surface of murine peripheral T cells is due to features of the cell and not the molecule. Furthermore, the cytoplasmic domain of CD4 is required for its modulation from the cell surface in response to PMA.
  • Authors

    Published In

    Author List

  • Sleckman BP; Bigby M; Greenstein JL; Burakoff SJ; Sy MS
  • Start Page

  • 1457
  • End Page

  • 1462
  • Volume

  • 142
  • Issue

  • 5