Regulation of interleukin-8 expression by reduced oxygen pressure in human glioblastoma

Academic Article

Abstract

  • Oxygen deprivation is an important biological feature of tumor growth. We previously showed that in glioma, anoxia increases expression of IL-8, a chemokine and angiogenic factor. Here, we analysed for the first time the biochemical mechanisms inducing the IL-8 gene upon anoxia in glioma cells, and showed that they differ from those inducing the VEGF gene. Both genes are induced in biologically and genetically heterogenous glioblastoma cell lines (LN-229, LN-Z308, U87MG, T98G), whereas, in gliosarcoma cells (D247MG), only the VEGF gene is induced. The kinetics of IL-8 and VEGF mRNA inductions differ in these cells and reoxygenation experiments showed that the induction is due to the anoxic stress per se. Furthermore, in LN-229 and LN-Z308 cell lines actinomycin D, DRB and nuclear run-on experiments showed that anoxia stimulates increased transcription of both genes. Electromobility shift assays show increased protein binding to the AP-1 site on the IL-8 promoter following anoxia treatment. Finally, in situ hybridization on glioblastoma sections shows that the in vivo expression patterns of IL-8 and VEGF genes overlap, but are not identical. Since intratumoral augmentation of IL-8 and VEGF secretion, following microenvironmental decreases in oxygen pressure, may promote angiogenesis, further definition of these pathways is essential to appropriately target them for antitumoral therapy.
  • Published In

  • Oncogene  Journal
  • Digital Object Identifier (doi)

    Author List

  • Desbaillets I; Diserens AC; De Tribolet N; Hamou MF; Van Meir EG
  • Start Page

  • 1447
  • End Page

  • 1456
  • Volume

  • 18
  • Issue

  • 7