Seasonal variations, source apportionment, and health risk assessment of heavy metals in pm2.5 in Ningbo, China

Academic Article


  • In order to assess the seasonal variations, potential sources, and health risks of heavy metals in fine particulate matter (PM2.5), PM2.5 samples (n = 96) were collected between March 2015 and February 2016 in Ningbo, China. Twelve heavy metals (Sb, As, Cd, Cr, Pb, Mn, Ni, Se, Tl, Al, Be, and Hg) found in the PM2.5 were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). We used enrichment factors and principal component analysis/absolute principal component scores (PCA/APCS) to determine the sources of these heavy metals, and models from the United States Environmental Protection Agency (EPA) to assess both the carcinogenic and non-carcinogenic risks to adults and children. Results showed that the average annual mass concentration of the PM2.5 was 62.7 µg m–3, which exceeded the limit specified in the Chinese National Ambient Air Quality Standards (NAAQS). The average annual concentrations of the Pb, Cd, and As were 57.2 ng m–3, 1.5 ng m–3, and 4.7 ng m–3, respectively, which were below the NAAQS limits. The highest total concentrations for the heavy metals occurred in winter, whereas the lowest concentrations were observed in summer. Enrichment factor analysis indicated that the Sb, Cd, Pb, Se, As, and Tl were mainly from anthropogenic sources. Additionally, source apportionment by PCA/APCS identified four major sources for the studied metals: coal combustion and motor vehicles (46.3%), soil and construction dust (37.1%), steelworks (6.9%), and other smelting industries (6.8%). The carcinogenic risk of heavy metals in Ningbo fell within the safe level of exposure for both children and adults. However, the total non-carcinogenic risk exceeded the safe level (HI = 1.38), which warrants further research on sources of air pollution and measures for controlling pollutants in Ningbo, China.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Wu Y; Lu B; Zhu X; Wang A; Yang M; Gu S; Wang X; Leng P; Zierold KM; Li X
  • Start Page

  • 2083
  • End Page

  • 2092
  • Volume

  • 19
  • Issue

  • 9