Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California

Academic Article

Abstract

  • We examined optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California, over a period of 1.5 years. Measurements included the hyperspectral inherent optical properties (IOPs) of seawater (particulate beam attenuation, particulate and CDOM absorption coefficients within the spectral range 300-850 nm), particle size distribution (PSD) within the diameter range 2-60 μm, and the mass concentrations of suspended particulate matter (SPM), particulate organic carbon (POC), and chlorophyll a (Chl). The particulate assemblage spanned a wide range of concentrations and composition, from the dominance of mineral particles (POC/SPM < 0.06) with relatively steep PSDs to the high significance or dominance of organic particles (POC/SPM > 0.25) with considerably greater contribution of larger-sized particles. Large variability in the particulate characteristics produced correspondingly large variability in the IOPs; up to 100-fold variation in particulate absorption and scattering coefficients and several-fold variation in the SPM-specific and POC-specific coefficients. Analysis of these data demonstrates that knowledge of general characteristics about the particulate composition and size distribution leads to improved interpretations of the observed optical variability. We illustrate a multistep empirical approach for estimating proxies of particle concentration (SPM and POC), composition (POC/SPM), and size distribution (median diameter) from the measured IOPs in a complex coastal environment. The initial step provides information about a proxy for particle composition; other particulate characteristics are subsequently derived from relationships specific to different categories of particulate composition. Copyright 2010 by the American Geophysical Union.
  • Digital Object Identifier (doi)

    Author List

  • Woźniak SB; Stramski D; Stramska M; Reynolds RA; Wright VM; Miksic EY; Cichocka M; Cieplak AM
  • Volume

  • 115
  • Issue

  • 8