Predictive modeling of housing instability and homelessness in the Veterans Health Administration

Academic Article

Abstract

  • Objective: To develop and test predictive models of housing instability and homelessness based on responses to a brief screening instrument administered throughout the Veterans Health Administration (VHA). Data Sources/Study Setting: Electronic medical record data from 5.8 million Veterans who responded to the VHA's Homelessness Screening Clinical Reminder (HSCR) between October 2012 and September 2015. Study Design: We randomly selected 80% of Veterans in our sample to develop predictive models. We evaluated the performance of both logistic regression and random forests—a machine learning algorithm—using the remaining 20% of cases. Data Collection/Extraction Methods: Data were extracted from two sources: VHA's Corporate Data Warehouse and National Homeless Registry. Principal Findings: Performance for all models was acceptable or better. Random forests models were more sensitive in predicting housing instability and homelessness than logistic regression, but less specific in predicting housing instability. Rates of positive screens for both outcomes were highest among Veterans in the top strata of model-predicted risk. Conclusions: Predictive models based on medical record data can identify Veterans likely to report housing instability and homelessness, making the HSCR screening process more efficient and informing new engagement strategies. Our findings have implications for similar instruments in other health care systems.
  • Authors

    Published In

    Digital Object Identifier (doi)

    Pubmed Id

  • 7494271
  • Author List

  • Byrne T; Montgomery AE; Fargo JD
  • Start Page

  • 75
  • End Page

  • 85
  • Volume

  • 54
  • Issue

  • 1