Morphing methods to parameterize specimen-specific finite element model geometries

Academic Article

Abstract

  • Shape plays an important role in determining the biomechanical response of a structure. Specimen-specific finite element (FE) models have been developed to capture the details of the shape of biological structures and predict their biomechanics. Shape, however, can vary considerably across individuals or change due to aging or disease, and analysis of the sensitivity of specimen-specific models to these variations has proven challenging. An alternative to specimen-specific representation has been to develop generic models with simplified geometries whose shape is relatively easy to parameterize, and can therefore be readily used in sensitivity studies. Despite many successful applications, generic models are limited in that they cannot make predictions for individual specimens. We propose that it is possible to harness the detail available in specimen-specific models while leveraging the power of the parameterization techniques common in generic models. In this work we show that this can be accomplished by using morphing techniques to parameterize the geometry of specimen-specific FE models such that the model shape can be varied in a controlled and systematic way suitable for sensitivity analysis. We demonstrate three morphing techniques by using them on a model of the load-bearing tissues of the posterior pole of the eye. We show that using relatively straightforward procedures these morphing techniques can be combined, which allows the study of factor interactions. Finally, we illustrate that the techniques can be used in other systems by applying them to morph a femur. Morphing techniques provide an exciting new possibility for the analysis of the biomechanical role of shape, independently or in interaction with loading and material properties. © 2009 Elsevier Ltd. All rights reserved.
  • Published In

    Digital Object Identifier (doi)

    Author List

  • Sigal IA; Yang H; Roberts MD; Downs JC
  • Start Page

  • 254
  • End Page

  • 262
  • Volume

  • 43
  • Issue

  • 2