3-Amino-5,5-dimethylhexanoic acid. Synthesis, resolution, and effects on carnitine acyltransferases.

Academic Article

Abstract

  • The selective inhibition of individual carnitine acyltransferases may be useful in the therapy of diabetes and heart disease. Aminocarnitine (3) is a weak competitive inhibitor (K(i) = 4.0 mM) for carnitine acetyltransferase (CAT), although the N-acetyl derivative 4 is about 165 times more potent (K(i) = 0.024 mM) than 3. Compound 3 is also a potent competitive inhibitor for carnitine palmitoyltransferases 1 and 2 (CPT-1 and CPT-2) (IC50 for CPT-2 = 805 nM). We synthesized 3-amino-5,5-dimethylhexanoic acid (7) and its N-acetyl derivative (8) as isosteric analogs of 3 and 4 that lack the quaternary ammonium positive charge. Like 3 and 4, compounds 7 and 8 were competitive inhibitors of CAT with significantly different potencies, but in this case, 8 (K(i) = 25 mM) was 10 times less potent than 7 (K(i) = 2.5 mM). R-(-)-7 and S-(+)-7 were stereoselective inhibitors of CAT (K(i) = 1.9 and 9.2 mM, respectively). Racemic 7 was a weak competitive inhibitor of CPT-2 (K(i) = 20 mM) and had no effect on CPT-1. These results are consistent with differences among the carnitine-binding sites on carnitine acyl-transferases that may be useful in selective inhibitor design. Furthermore, the data suggest that the quaternary ammonium positive charge of carnitine may be important for the proper orientation of carnitine and its analogs in the binding site.
  • Published In

    Keywords

  • Aminocaproates, Animals, Binding, Competitive, Carnitine Acyltransferases, Columbidae, Kinetics, Stereoisomerism
  • Author List

  • Saeed A; McMillin JB; Wolkowicz PE; Brouillette WJ
  • Start Page

  • 3247
  • End Page

  • 3251
  • Volume

  • 37
  • Issue

  • 20