Generation and properties of a Streptococcus pneumoniae mutant which does not require choline or analogs for growth

Academic Article

Abstract

  • A mutant (JY2190) of Streptococcus pneumoniae Rx1 which had acquired the ability to grow in the absence of choline and analogs was isolated. Lipoteichoic acid (LTA) and wall teichoic acid (TA) isolated from the mutant were free of phosphocholine and other phosphorylated amino alcohols. Both polymers showed an unaltered chain structure and, in the case of LTA, an unchanged glycolipid anchor. The cell wall composition was also not altered except that, due to the lack of phosphocholine, the phosphate content of cell walls was half that of the parent strain. Isolated cell walls of the mutant were resistant to hydrolysis by pneumococcal autolysin (N-acetylmuramyl-L- alanine amidase) but were cleaved by the muramidases CPL and cellosyl. The lack of active autolysin in the mutant cells became apparent by impaired cell separation at the end of cell division and by resistance against stationary- phase and penicillin-induced lysis. As a result of the absence of choline in the LTA, pneumococcal surface protein A (PspA) was no longer retained on the cytoplasmic membrane. During growth in the presence of choline, which was incorporated as phosphocholine into LTA and TA, the mutant cells separated normally, did not release PspA, and became penicillin sensitive. However, even under these conditions, they did not lyse in the stationary phase, and they showed poor reactivity with antibody to phosphocholine and an increased released of C-polysaccharide from the cell. In contrast to ethanolamine- grown parent cells (A. Tomasz, Proc. Natl. Acad. Sci. USA 59:86-93, 1968), the choline-free mutant cells retained the capability to undergo genetic transformation but, compared to Rx1, with lower frequency and at an earlier stage of growth. The properties of the mutant could be transferred to the parent strain by DNA of the mutant.
  • Authors

    Author List

  • Yother J; Leopold K; White J; Fischer W
  • Start Page

  • 2093
  • End Page

  • 2101
  • Volume

  • 180
  • Issue

  • 8