IL-10 mediation of activation-induced Th1 cell apoptosis and lymphoid dysfunction in polymicrobial sepsis

Academic Article

Abstract

  • Recent studies suggest that increased activation-induced lymphocyte apoptosis (AICD) is detected in mouse splenocytes during polymicrobial sepsis which may contribute to lymphocyte immune dysfunction [i.e., decreased interleukin (IL-)2 and interferon-γ (IFN-γ) production] leading to the associated morbidity seen in those animals. Thus, we wanted to examine the hypothesis that immune suppressive agents, such as IL-4, IL-10 or prostaglandin E2 (PGE2), known to be elevated in septic animals, also contribute to this increase in AICD. Here we demonstrate that the inclusion of monoclonal antibody (mAb) to IL-10, but not anti-IL-4 or ibuprofen (IBU), blunted this sepsis induced increase in splenocyte AICD. Additionally, septic mice deficient in the IL-10 gene product (-/-) showed neither an increase in AICD nor a loss of IL-2/IFN-γ release capacity. Interestingly, mAb to IL-10 did not altered the extent of AICD in a Th2-cell line, but exogenous IL-10 did potentiate Th1-like cell line AICD. This was consistent with the finding that the increased AICD seen in septic mouse splenocytes was restricted largely to the CD4+ cells producing IL-2 (Th1-cells) and that mAb to IL-10 treatment suppressed this change. Furthermore, IL-10 appears to mediate its AICD effect by upregulation of the Fas receptor and Fas receptor signaling protein components, but not by altered expression of Bcl/Bax/Bad family members, in septic mouse splenocytes. To the extent that these processes contribute in a pathological fashion to the animal's capacity to survive sepsis we have previously observed that in vivo post-treatment of mice with mAb IL-10 markedly attenuated septic mortality. Collectively, these data indicate that in the septic mouse the Th2 cytokine IL-10 not only serves to actively induce Th1 lymphocyte immune dysfunction but also plays a role in their apoptotic depletion. These processes in turn appear to contribute to the animal's inability to ward off lethal septic challenge. © 2001 Academic Press.
  • Authors

    Published In

  • Cytokine  Journal
  • Digital Object Identifier (doi)

    Author List

  • Ayala A; Chung CS; Song GY; Chaudry IH
  • Start Page

  • 37
  • End Page

  • 48
  • Volume

  • 14
  • Issue

  • 1