Hybrid cell vaccination resolves Leishmania donovani infection by eliciting a strong CD8+ cytotoxic T-lymphocyte response with concomitant suppression of interleukin-10 (IL-10) but not IL-4 or IL-13

Academic Article

Abstract

  • There is an acute dearth of therapeutic interventions against visceral leishmaniasis that is required to restore an established defective cell-mediated immune response. Hence, formulation of effective immunotherapy requires the use of dominant antigen (s) targeted to elicit a specific antiparasitic cellular immune response. We implemented hybrid cell vaccination therapy in Leishmania donovani-infected BALB/c mice by electrofusing dominant Leishmania antigen kinetoplastid membrane protein 11 (KMP-11)-transfected bone marrow-derived macrophages from BALB/c mice with allogeneic bone marrow-derived dendritic cells from C57BL/6 mice. Hybrid cell vaccine (HCV) cleared the splenic and hepatic parasite burden, eliciting KMP-11-specific major histocompatibility complex class I-restricted CD8+ cytotoxic T-lymphocyte (CTL) responses. Moreover, splenic lymphocytes of HCV-treated mice not only showed the enhancement of gamma interferon but also marked an elevated expression of the Th2 cytokines interleukin-4 (IL-4) and IL-13 at both transcriptional and translational levels. On the other hand, IL-10 production from splenic T cells was markedly suppressed as a result of HCV therapy. CD8+ T-cell depletion completely abrogated HCV-mediated immunity and the anti-KMP-11 CTL response. Interestingly, CD8+ T-cell depletion completely abrogated HCV-induced immunity, resulting in a marked increase of IL-10 but not of IL-4 and IL-13. The present study reports the first implementation of HCV immunotherapy in an infectious disease model, establishing strong antigen-specific CTL generation as a correlate of HCV-mediated antileishmanial immunity that is reversed by in vivo CD8+ T-cell depletion of HCV-treated mice. Our findings might be extended to drug-nonresponsive visceral leishmaniasis patients, as well as against multiple infectious diseases with pathogen-specific immunodominant antigens. Copyright © 2007, American Society for Microbiology. All Rights Reserved.
  • Authors

    Published In

    Digital Object Identifier (doi)

    Author List

  • Basu R; Bhaumik S; Haldar AK; Naskar K; De T; Dana SK; Walden P; Roy S
  • Start Page

  • 5956
  • End Page

  • 5966
  • Volume

  • 75
  • Issue

  • 12