Forces necessary for the disruption of the cisternal segments of cranial nerves II through XII

Academic Article

Abstract

  • Manipulation of the cisternal segment of cranial nerves is often performed by the neurosurgeon. To date, attempts at quantifying the forces necessary to disrupt these nerves in situ, to our knowledge, has not been performed. The present study seeks to further elucidate the forces necessary to disrupt the cranial nerves while within the subarachnoid space. The asternal segments of cranial nerves II through XII were exposed in six unfixed cadavers, all less than 6 hr postmortem. Forces to failure were then measured. Mean forces necessary to disrupt nerves for left sides in increasing order were found for cranial nerves IX, VII, IV, X, XII, III, VIII, XI, VI, V, and II, respectively. Mean forces for right-sided cranial nerves in increasing order were found for cranial nerves IX, VII, IV, X, XII, VIII, V, VI, XI, III, and II, respectively. Overall, cranial nerves requiring the least amount of force prior to failure included cranial nerves IV, VII, and IX. Those requiring the highest amount of force included cranial nerves II, V, VI, and XI. There was an approximately ten-fold difference between the least and greatest forces required to failure. Cranial nerve III was found to require significantly (P < 0.05) greater forces to failure for right versus left sides. To date, the neurosurgeon has had no experimentally derived data from humans for the in situ forces necessary to disrupt the cisternal segment of cranial nerves II through XII. We found that cranial nerve IX consistently took the least amount of force until its failure and cranial nerve II took the greatest. Other cranial nerves that took relatively small amount of force prior to failure included cranial nerves IV and VII. Although in vivo damage can occur prior to failure of a cranial nerve, our data may serve to provide a rough estimation for the maximal amount of tension that can be applied to a cranial nerve that is manipulated while within its cistern. © 2005 Wiley-Liss, Inc.
  • Digital Object Identifier (doi)

    Author List

  • Tubbs RS; Wellons JC; Blount JP; Salter EG; Oakes WJ
  • Start Page

  • 252
  • End Page

  • 255
  • Volume

  • 20
  • Issue

  • 3