A gyrase mutant with low activity disrupts supercoiling at the replication terminus

Academic Article

Abstract

  • When a mutation in an essential gene shows a temperature-sensitive phenotype, one usually assumes that the protein is inactive at nonpermissive temperature. DNA gyrase is an essential bacterial enzyme composed of two subunits, GyrA and GyrB. The gyrB652 mutation results from a single base change that substitutes a serine residue for arginine 436 (R436-S) in the GyrB protein. At 42°C, strains with the gyrB652 allele stop DNA replication, and at 37°C, such strains grow but have RecA-dependent SOS induction and show constitutive RecBCD-dependent DNA degradation. Surprisingly, the GyrB652 protein is not inactive at 42°C in vivo or in vitro and it doesn't directly produce breaks in chromosomal DNA. Rather, this mutant has a low kcat compared to wild-type GyrB subunit. With more than twice the normal mean number of supercoil domains, this gyrase hypomorph is prone to fork collapse and topological chaos near the terminus of DNA replication. Copyright © 2005, American Society for Microbiology. All Rights Reserved.
  • Authors

    Published In

    Digital Object Identifier (doi)

    Author List

  • Pang Z; Chen R; Manna D; Higgins NP
  • Start Page

  • 7773
  • End Page

  • 7783
  • Volume

  • 187
  • Issue

  • 22