Transmural recording of monophasic action potentials

Academic Article

Abstract

  • To investigate the possibility of transmural recording of repolarization through the ventricular wall, KCl monophasic action potential (MAP) electrodes positioned along plunge needles were developed and tested. The MAP electrode consists of a silver wire surrounded by agarose gel containing KCl, which slowly eluted into the adjacent tissue to depolarize it. In six dogs, a plunge needle containing three KCl MAP electrodes was inserted into the left ventricle to simultaneously record from the subepicardium, midwall, and subendocardium. In six pigs, eight plunge needles containing three KCl MAP electrodes and two plunge needles containing similar electrodes except for the absence of KCl were inserted into the ventricles. In three guinea pig papillary muscles, a KCl electrode was used to record MAPs along with two microelectrodes for recording transmembrane potentials. Transmural MAP recordings could be made for >1 h in dogs and >2 h in pigs with a significant decrease in MAP amplitude over time but without a significant change in MAP duration. With the electrodes without KCl in pigs, the injury potentials subsided in <30 min. When the pacing rate was changed to alter the action potential duration and refractory period in dogs, the MAP duration correlated with the local effective refractory period (r = 0.94). The time course of the MAP duration recorded with a KCl MAP electrode in guinea pig papillary muscles corresponded well with that of the transmembrane potential recorded with an adjacent microelectrode. It is possible to record transmural repolarization of the ventricles with KCl MAP electrodes on plunge needles. The MAP is caused by the KCl rather than being a nonspecific injury potential.
  • Authors

    Digital Object Identifier (doi)

    Author List

  • Zhou X; Huang J; Ideker RE
  • Volume

  • 282
  • Issue

  • 3 51-3