Evidence for two populations of rat spinal dorsal horn neurons excited by urinary bladder distension

Academic Article

Abstract

  • Spinal L6-S2 dorsal horn neurons of cervical spinal cord-transected, decerebrate female rats were characterized using urinary bladder distension (UBD) as a visceral stimulus. Constant pressure, phasic, graded (20-80 mm Hg, 20 s) air UBD was delivered via a transurethral catether and extracellular single-unit recordings obtained from all neurons excited by UBD. Responses to graded UBD and noxious/non-noxious cutaneous stimuli were determined in 258 neurons which could be stratified into two groups based on their effect of a counterirritation stimulus: Type I neurons (n=112) were inhibited by noxious pinch presented in a non-segmental field; Type II neurons (n=146) were not similarly inhibited. Both Types of neurons were identified in both superficial and deep recording sites and demonstrated graded responses to graded UBD. All UBD-excited neurons had convergent cutaneous receptive fields (RFs) excited by non-noxious and/or noxious stimuli. As a group, Type I neurons had a period of decreased activity following termination of the distending stimulus whereas Type II neurons typically had a sustained afterdischarge. UBD-evoked activity in Type II neurons was inhibited more than similar activity in Type I neurons by both intravenous morphine and lidocaine. These results support the assertion that at least two different populations of spinal dorsal horn neurons exist which encode for a stimulus of urinary bladder distension. These populations are an analogue to previously characterized, similar neuronal populations excited by colorectal distension and suggest that they are representative of the overall phenomenon of visceral sensory processing, a component of which is nociception. © 2001 Elsevier Science B.V. All rights reserved.
  • Published In

  • Brain Research  Journal
  • Digital Object Identifier (doi)

    Author List

  • Ness TJ; Castroman P
  • Start Page

  • 147
  • End Page

  • 156
  • Volume

  • 923
  • Issue

  • 1-2